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A class of compressible laminar boundary-layer flows subject to adverse pressure 
gradients of different magnitude is studied using a finite-element-differential method 
in which the assumed solutions are represented by classical cubic spline functions. 
The numerical integration process for the reduced initial-value problem has been 
carried out directly to a t  least one integration step upstream of the separation point, 
and very accurate numerical results have been obtained for a large number of 
integration steps extremely close to separation. The skin-friction and heat-transfer 
coefficients for nearly zero-heat-transfer, cooled-wall and heated-wall cases, computed 
under the assumption of constant Prandtl number Pr = 1 .O as well as Pr = 0.72, have 
clearly exhibited the same distinctive behaviour near separation. It is deduced that 
Buckmaster’s series expansions for the solution near separation, derived on the 
assumptions of cooled wall and Pr = 1.0, are valid for all the cases considered. By 
matching the numerical results with Buckmaster’s expansions, accurate distributions 
of skin friction and heat transfer have been obtained up to the separation point. 
Moreover, the importance of Prandtl number on the solution is evidenced from the 
numerical results presented. 

1. Introduction 
The development of a boundary layer under the action of a sharp adverse pressure 

gradient has been of special interest in compressible-flow analysis mainly because of 
its connection to shock-wave-boundary-layer interaction problems. It is well known 
that numerical methods for parabolic problems can provide accurate solutions of the 
governing equations for most of the boundary-layer flow region. However, close to 
separation the accuracy of the numerical results deteriorates to the extent that  the 
true solution characteristics are lost and an interactive boundary-layer approach is 
necessary for a complete solution. Consequently, the accurate computation of the skin 
friction and heat transfer close to  separation is a challenging problem. Moreover, an 
accurate solution near separation may provide valuable information for the solution 
of the Navier-Stokes equations involving a point of zero skin friction. Therefore a 
great deal of attention has been focused on resolving the true characteristics of the 
boundary -layer solutions near the separation point. 

Two decades ago, Stewartson (1962) investigated the solution of a laminar 
compressible boundary layer near a point of zero skin friction. Following closely the 
approach introduced for the incompressible case (Goldstein 1948 ; Stewartson 1958), 
Stewartson concluded that a general compressible laminar boundary layer can 
develop a singularity a t  a point of zero skin friction only if the heat transfer a t  that 
point is zero. This conclusion was supported by the numerical results reported earlier 
by Poots (1960), and was not contradicted by those of Curle (1958). However, later 
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Merkin (1969) studied an incompressible boundary-layer flow over a vertical semi- 
infinite flat plate heated to a constant temperature in a uniform stream and reported 
the existence of a singularity a t  separation for the case of buoyancy forces opposing 
the development of the boundary layer. The numerical work of Merkin showed the 
need for a closer examination of Stewartson’s expansion, since the convection 
problem solved by Merkin is mathematically analogous to  that of a compressible 
boundary layer treated by Stewartson. I n  1970 Buckmaster took a different approach 
in examining the compressible boundary-layer equations. Following Kaplun’s (1  967) 
analysis of the incompressible case, Buckmaster found for the cooled-wall case that 
a singularity can exist at a point of zero skin friction even if the heat transfer is not 
zero a t  that  point. 

A number of numerical investigations on the solution behaviour of compressible 
boundary-layer flows near separation have been reported after the publication of 
Buckmaster’s work. Werle & Senechal ( 1973) considered linearly and quadratically 
retarded supersonic boundary-layer flows ; their solutions offered evidence in support 
of Buckmaster’s series expansions. Davies & Walker (1977) obtained numerical 
solutions for compressible flow past a circular cylinder and a linearly retarded flow 
and found that Buckmaster’s expansions can be fitted to  their numerical results not 
only for cooled walls but also for heated walls as well. More recently, Hunt & Wilks 
(1  980) re-examined theoretically and numerically the behaviour of the laminar 
boundary-layer equations of mixed convection near a point of zero skin friction and 
demonstrated that Buckmaster’s expansion is not an inherent feature of the coupling 
of the momentum and energy equations. They concluded that Stewartson’s expansion 
is sufficient to describe the structure of the singularity at separation for the case of 
uniform heat flux a t  the wall. 

The reported methods of solution for compressible boundary-layer flows can 
provide accurate results for most of the boundary-layer region ; however, in the close 
vicinity of separation, they often fail to converge or give inaccurate results. For 
further positive assertion of Buckmaster’s series expansion, highly accurate numerical 
results for the region extremely close to separation are needed. Hsu (1976) has 
developed a semidiscretization method for boundary-layer equations in which the 
transformed governing equations are reduced to a system of first-order nonlinear 
ordinary differential equations by a method of weighted residuals, and the assumed 
solutions a t  a streamwise station are represented by classical cubic spline functions. 
The resulting initial-value problem is integrated numerically by a predictor-corrector 
method. The method has been investigated in great detail on a number of different 
boundary-layer flow problems (e.g. Hsu & Chang 1982; Hsu & Liakopoulos 1982; 
Liakopoulos 1984), and has proved to be very effective. It can provide highly accurate 
results for nearly the entire boundary-layer region. 

In  the present work, a class of laminar compressible boundary-layer flows is studied 
using the developed semidiscretization method. Each boundary layer develops 
initially under zero pressure gradient and then separates under the action of an 
adverse pressure gradient which is proportional to a positive parameter A. The 
problems solved include insulated-, cooled- and heated-wall cases for a wide range 
of values of the parameter A. For all cases considered, the numerical integration 
process for the reduced initial-value problem has been carried out without any 
difficulty to at least one integration step upstream of the separation, and very 
accurate results have been obtained extremely close to separation. The computed 
skin-friction and heat-transfer coefficients near separation do exhibit the behaviour 
predicted by Buckmaster’s expansion. Therefore, by coupling Buckmaster’s series 
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solutions with the numerical results, we have obtained accurate distribution of skin 
friction and heat transfer for the entire boundary-layer region, including the heat 
transfer at the separation point. For the very sharp adverse-pressure-gradient cases 
the computed results are in good agreement with Curle’s (1978) series solution, 
obtained under the assumptions h-t GO and Pr = 1. The only exception is the value 
of the heat-transfer coefficient a t  separation, which we find relatively insensitive to 
wall-temperature conditions. Finally, a number of computations for fluids of Prandtl 
number different from unity have been performed. It has been found that the effect 
of Prandtl number is more pronounced for flows over cooled walls. 

2. The governing equations 
It is well known that the governing boundary-layer equations for steady, two- 

dimensional, laminar, compressible flow of perfect gases can be reduced to  a form 
similar to  those for incompressible flow by the Illingworth-Stewartson transformation 
if one assumes that the viscosity is linearly proportional to the temperature and that 
the Prandtl number Pr is constant. Hence the transformed boundary-layer equations 
for the compressible flow are 

where 

au av 
ax ay 
-+- = 0, 

au au due a2u 
u-+v-= U e - - ( l + S ) + U o ~ ,  

ax ay dz a Y  

The subscript e denotes conditions a t  the outer edge of the boundary layer and S 
is related to the temperature T by 

Equation ( 5 )  clearly shows that S becomes zero at the outer edge of the boundary 
layer and that a t  the wall we have 

Sw=-- l ,  T W  T, 3 T,[l+$(y-l)W,]. 
r, 

Hence the associated boundary conditions considered are 

u=O, v = O ,  S=Sw a t  y = O ,  ( 7 )  

u+Ue(x) ,  # + O  as y+m.  ( 8 )  

As discussed by Hsu (1976), i t  is advantageous from the computational point of 
view to carry out a number of additional transformations. Since the growth rate of 
the boundary layer is not known beforehand, a transformation of Falkner-Skan type 
is introduced to suppress the variation in the boundary-layer thickness. The 
boundary conditions are made the same for ad1 conceivable problems of the class. 
Moreover, a von Mises transformation is applied to reduce the number of dependent 
variables by one and to put the equations in the standard form of parabolic equations. 
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Following these transformations (given in the Appendix) the initial boundary-value 
problem to be solved, (1)-(8), becomes 

d l n  U 
2 [( 1 -w) + B( 1 -$$I __ 

d5 ' 
(9) 

4 5 , O )  = 0, $(t, 0) = 0, w(6, H )  = 1, $(t> H )  = 1,  (12) 

W ( 0 + > 7 )  = W0(7)> $ ( O + ,  7)  = 40(7) ,  (13) 

where w([, 7) and $(C, 7) are the squares of the transformed velocity and temperature 
respectively, while TI([), O([) and M(5)  are related to  the given boundary conditions 
and reference parameters. The additional conditions, resulting from the physical 
boundary conditions and transformations, are 

aw a$ - =--  - 0  a t  7 = 0  and y = H .  
a7 a7 

We note that the conditions a t  infinity have been imposed a t  a sufficiently large finite 
distance 7 = H .  

3. The numerical method 
In  the method of solution, the transformed solution profiles for w ( 6 , ~ )  and $([, 7) 

a t  a streamwise station 5 are approximated by classical cubic spline functions. 
Suppose that the interval 0 < 7 < H is divided into n elements with nodes at 
0 = vo < yl < ... < y n  = H .  Denote the size of the ith element by hi = qt-qiP1 for 
i = 1, . . . , n and the unknown functional values of the j t h  node by 

w&-) = w('5 7j)> 4j(5) = 4(E> 7j). (15) 
The assumed solutions for w([,y) and #(C, 7)  can be written (Hsu 1980) as 

where 

atj are known polynomials of degree 3 or less in z ,  and 

1 when 7i- l  
0 otherwise. 

st = { 
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For the application of the method of weighted residuals, wc have chosen the following 
set of weight functions for both (9) and (10) : 

Accordingly, we obtain the following system of equations : 

where Wj and $ j  are the cubic polynomials approximating w(<, 7) and $(<, 7) in the 
j t h  element, and R,, R$ represent the right-hand sides of (9) and (10) respectively. 
Equations (21) and (22) can be written in the matrix form 

where A is an n- 1 by n- 1 non-singular constant matrix, which depends only upon 
the discretization in the 7-direction. The kth elements of rl and rz are given by the 
right-hand sides of (21) and (22) ; they are accurately and efficiently evaluated with 
a Gauss-Legendre quadrature formula. The unknown n - 1 dimensional vectors w 
and 4 are defined as 

The reduced initial-value problem (23) and (13) is solved with a predictor-corrector 
method based on the backward-difference formulas for stiff ordinary differential 
equations (Gear 1969). I n  this method the integration step size is automatically 
controlled by preassigned local error tolerance parameters. All computations were 
performed on an IBM 3081D computer in double-precision arithmetic. 

4. Numerical results 
For the numerical solution of the boundary-layer flow problem (1)-(8), we have 

assumed that the wall temperature is constant, i.e. S, = constant, and that the 
pressure distribution is uniform when x 8 xo but has a prescribed adverse gradient 
when x > xo. Accordingly, the external velocity in (2) and (8) is specified by the 
following : 

Ue(x)  = Uo = const when x < xo, (25)  

where h is a positive constant. This class of problems, under the assumptions that 
h is large and Pr = 1 .O, has been solved by Curle (1978) with a technique of matched 
asymptotic expansions. He found that the skin friction Q1, the heat transfer Q2 and 
the separation point Cs can be represented for large h and x > xo by the series 
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where 

Cs = 0.09766+0.00403vwh-1+0.00035a~A-2+ ..., (29) 

For the transformed boundary-layer flow problem (9)-( 13) the forcing functions 
in the governing equations take the forms 

(PY- 1) ( A  - 1) U2([) 

a ( ‘ ) = P ~ [ A + ( A - l )  U 2 ( 6 ) ] ’  

where e is a constant introduced to replace the zero integration limit in the 
Falkner-Skan transformation. The value E = has been used in the calculations. 
Moreover, the skin friction and heat transfer for f > to become 

To assure the accuracy of the numerical solutions, a number of numerical 
experiments have been conducted. It was found that H = 5.21 is sufficiently large 
for imposing the outer boundary conditions. Solutions computed with larger values 
of H were identical within the accuracy of the discretization used. An adaptive 
36-element discretization model with element size distribution hi = /0.001, 0.0015, 
0.0025, 0.005, 2*0.01, 2*0.02, 2*0.03, 2*0.04, 2*0.05, 2*0.1, 2*0.15, 2*0.2, 16*0.25/ 
has proved to  give very accurate results. To assess the accuracy achieved, further 
runs were made using a refined discretization model having first-element size 
h, = 0.0005. I n  all cases, the absolute value of the differences in the computed 
skin-friction coefficient Ql, as well as the heat-transfer coefficient Q 2 ,  were less than 
lou5 in the zero-pressure-gradient region and less than in the adverse-pressure- 
gradient region of the boundary layer. 

The first group of problems solved is the nearly zero-heat-transfer case with 
1% = 1.0. To clarify the loosely defined condition ‘large A ’  assumed in the series 
solution, we have selected four different values of h and X, = The computed 
separation points are given in table 1 in terms of Curle’s coordinate < = h(z/zo-  l) i .  
The computed skin friction Q, and heat transfer Q, are given in figures 1 and 2 
respectively. It should be noted that the value of Q2 a t  the separation point Cs is 
predicted from Buckmaster’s series as discussed in $5. It is apparent that the 
separation point cs does not vary appreciably when h is greater than or equal to one; 
furthermore, cs = 0.0973 agrees with the series solution (29) to  the accuracy of the 
numerical solution. Similarly, the distributions of Q1 and Q2 for h = 1 and A = 5 agree 
with those obtained from (27 )  and (28). However, the agreement starts to deteriorate 
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A 5.00 1 .oo 0.20 0.02 

t 0.097 32 0.097 34 0.092 33 0.03343 
u, A-’ 2 x 10-7 1 0 - 6  5 x 10-6 5~ 10-5 

TABLE 1. Computed separation points for various values of 
u, A-’; nearly zero heat transfer, Pr = 1 .O 

0.24 1 
0.20 

0.16 
Q, 

0.12 

0.08 

0.04 

FIQURE 1. The skin-friction coefficient Q1 for different values of A with S ,  = and Pr = 1 .O. 

0.48 I 
0.40 

Q2 

0.32 

0.24 

0.16 L 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIGURE 2. The heat-transfer coefficient Q2 for different values of A with S,  = and Pr = 1.0. 

as the value of h is decreased from one; in fact, the series (27)-(29) cannot be used 
for the case h = 0.02, even though Ic~,h-~l 4 1.  

The numerical solutions obtained for the nearly zero-heat-transfer case imply that 
the loosely defined condition ‘large A’ for (27)-(29) can be interpreted as h 3 1 .  In  
order to  confirm further the conclusion on ‘large A’ ,  we have solved three additional 
problems with h = 1.0 and Pr = 1.0: one with heated wall (8, > 0) and two with 
cooled walls (S, < 0). As shown in table 2, the computed separation points do agree 
with the series solution (29) to the third decimal place. Also, the computed skin-friction 
distribution agrees with the three-term series solution (27) a t  least to the third 
decimal place. Parenthetically? we remark that the published table for Po({) and PI(<) 
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SW rw A-1 &(computed) t ( (29) ) 

1 .o 2 0.0995 0.0997 1 

-1 -1 0.0954 0.0957 
-1 -1 0.0936 0.0939 

TABLE 2. Comparison of computed separation points with those predicted by (29), Pr = 1.0 

and F,(<) (Curle 1978) indicates that the magnitude of the third term is of order of 
For the heat-transfer coefficient Q 2 ,  the published table for Go(C) and G,(Q shows 

that the magnitude of the second term in (28) is of order of for most of the region, 
except a t  the separation point, where i t  is of order of 10-l; hence we can expect the 
truncation error of the two-term series (28) to  be as large as 10-1 in the vicinity of 
the separation. The comparison of the computed Q2 with the results of the two-term 
series (28) shows that the difference increases to about 5% as C increases to 0.9Cs; 
moreover, the series solution gives Q,  = 0.08298 a t  Cs for the heated-wall problem, 
while Buckmaster’s series solution predicts Q,  = 0.218 a t  separation. It is clear that  
the series for Q, converges rather slowly in the vicinity of the separation point. 

The assumption of Prandtl number equal to unity is often made in order to  simplify 
the governing energy equation (3) or (10); however, i t  is important to  investigate 
the effect of Prandtl number on the skin-friction and heat-transfer coefficients. 
The inclusion of the viscous-dissipation term in the energy equation has little 
effect upon the accuracy and efficiency of the solut,ion method. One heated-wall 
problem (X, = 1.0 and vWA-l = 0.5) and one cooled-wall problem (8, = -0.5 and 
v, h-l = - 1.0) have been solved under the assumptions Pr = 0.72 and M ,  = 0.5; the 
separation points computed are Cs = 0.0993 and Cs = 0.0939 respectively. The 
computed skin-friction coefficient Q1 and heat-transfer coefficient Q 2 ,  along with those 
for Pr = 1 .O, are given in table 3. It is clear that  the effect of Prandtl number on the 
separation point as well as the skin friction is rather nugatory ; however, as expected, 
the effect of Prandtl number on the heat transfer is significant. 

5. The behaviour of solutions close to separation 
Numerical methods for parabolic problems can provide accurate solutions for most 

of the boundary-layer flow region; however, close to separation the accuracy of the 
numerical results often deteriorates to the extent that  the correct characteristics of 
the solution are lost. The breakdown of numerical methods and the well-known loss 
of convergence of series solutions near separation suggest the existence of a 
singularity there. The structure of the singularity is well understood in the incom- 
pressible-flow case (e.g. Goldstein 1948 ; Stewartson 1958). However, the assumptions 
of the corresponding theory for compressible flow is still under investigation, and 
further numerical evidence is needed to support the analytical results (Hunt & Wilks 
1980). 

Following Kaplun’s (1967) analysis of the incompressible case, Buckmaster (1970) 
has treated the compressible boundary-layer problem (1)-(8) for cooled walls (8, < 0) 
with Pr = 1.0 and obtained series expansions for the solution near separation. His 
results for predicting skin friction and heat transfer may be written in the form 

+...I, (35) 
In (In z (  

In z 
D,(z) = zf”(z, 0) = z2 2a0 In z+ 2a, + 2a, In Iln 21 + 201, ___ 
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0.000000 
0.009 977 
0.019954 
0.029930 
0.039907 
0.049884 
0.059 861 
0.069 838 
0.079814 
0.089791 

5 = h(E-lY 

o.oO0ooo 
0.009395 
0.018789 
0.028 184 
0.037578 
0.046973 
0.056368 
0.065 762 
0.075 157 
0.084551 

Heated-wall case (S, = 1.0, h = 1.0) 

Q1 Q, 

Pr = 0.72 Pr = 1.0 Pr = 0.72 

0.22052 
0.191 81 
0.16417 
0.13771 
0.11264 
0.089 14 
0.06700 
0.04653 
0.02830 
0.011 89 

0.22052 
0.191 71 
0.164 2 1 
0.13787 
0.11287 
0.08930 
0.067 21 
0.04681 
0.02832 
0.012 17 

0.421 11 
0.41232 
0.403 12 
0.393 32 
0.38265 
0.37080 
0.35768 
0.34246 
0.32380 
0.298 10 

Cooled-wall case (S, = -0.5, h = 1.0) 

Q, Q Z  

Pr = 0.72 Pr = 1.0 Pr = 0.72 

0.22052 
0.193 30 
0.1 66 70 
0.14105 
0.11626 
0.092 82 
0.07046 
0.04949 
0.03030 
0.01333 

0.22052 
0.19329 
0.16665 
0.14094 
0.11607 
0.092 55 
0.07010 
0.04905 
0.02978 
0.01278 

0.41201 
0.40381 
0.395 29 
0.38589 
0.37575 
0.36425 
0.351 38 
0.33638 
0.31786 
0.29232 

Pr = 1.0 

0.49690 
0.45969 
0.44871 
0.43706 
0.42457 
0.41098 
0.39558 
0.377 82 
0.356 20 
0.32650 

Pr = 1.0 

0.46960 
0.45978 
0.44969 
0.43823 
0.426 13 
0.41234 
0.396 73 
0.37861 
0.356 19 
0.32499 

TABLE 3. Skin-friction and heat-transfer coefficient distributions for Pr = 1.0 and Pr = 0.72 

In (In zI +...I, B2(z) 5 z-lg’(z, 0) = B, - zB, gL(0) 201, In z+ 2a, -t 2a, InJln zl + 2a3 ___ 
In z 

(36) 

in which f denotes a non-dimensional stream function and g a dimensionless tempera- 
ture function. The dimensionless distance z measured from the separation point x, 
is defined as 

1 dU, 
U,  dx x-xs  

(37) 

in which the subscript s refers to conditions at  the separation point. Moreover, 
Buckmaster showed that 

-2Z4(-f)!B, 
a,, = , a2 = (1-21n2)a0, 

64(f !)3 

- 64(+!y a: - 22xt 
013 = 2 d  (-+)! B, ’ g m  = s(a!)37 

12 FLM 149 
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1 0 - 3  L -4‘, , , , , , , , ,  I I I 8 , , 8 L  

10-7 lo+ 10-5 10-4 
(xs -x )/xo 

FIGURE 3. The distributions of D,(z) and D,(z) near separation for a heated-wall case, h = 1.0, 
S, = 1 .O and Pr = 1.0: -, numerical results; ---, Buckmaster’s expansions with a, = 1.42 and 
B,  = -0.109. 

while a1 and B, are two unknown constants to be determined. In terms of the 
transformed problem (9)-(13), we have 

in which the constant A and the function B(&) are defined in (31). 
For the numerical method employed in this study the streamwise integration 

process can be carried out without any difficulty to at  least one integration step 
upstream of the separation point. The computed D,(z) and D,(z) close to separation 
for a heated-wall case are presented in figure 3. Similar results are obtained in the 
cooled-wall case and the nearly zero-heat-transfer case. As expected, the accuracy 
of the computed skin friction starts to deteriorate somewhat in the region extremely 
close to separation, while the accuracy of D2(z) is drastically reduced. The loss of 
accuracy could have been recovered to some extent by using a more refined 
discretization model and a more stringent accuracy requirement in the integration 
process. It should be pointed out, however, that an accurate heat transfer at  
separation cannot be computed directly from (34) or (39), since the value of a2w/i3y2 
at 7 = 0 approaches zero as & approaches the separation point. Hence a special 
measure is required to predict the heat-transfer coefficient a t  separation. 

The numerical results obtained for all the cases considered do exhibit the behaviour 
of the solution near separation predicted by Buckmaster’s series solutions (35) and 
(36); that is, D,(z) is proportional to (2, -x); and D,(z) is proportional to (x,-x):. In 
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n 8, 
5.0 10-6 
1 .o 10-6 
0.2 1 0 - 6  
0.02 10-6 
1 .o -1 

1 .o -1 

1 .o 1 .o 

fTw h-1 

2 x 10-7 
1 x 10-6 
5 x 10-6 
5 x 10-5 

-1.0 
-1 

- 
2 

% 
3.36 
1.43 
0.676 
0.523 
1.46 
1.49 
1.42 

B, 
-0.097 X 

-0.216 x lo-' 
-0.455 X lo-' 
-0.609 x 

0.107 
0.211 

-0.109 

QZ at separation 

0.217 
0.216 
0.216 
0.216 
0.216 
0.216 
0.218 

TABLE 4. Values of al, B, and Qz at separation; Pr = 1.0 

X - 
X o  

1.000 70000 
1.000 80002 

1.000 855 3 1 
1.000 856 3 1 
1.000 857 3 1 
1.000 85801 
1.00085904 
1 .OOO86033 
1.00086105 
1.000 862 14 
1.00086339 
1.00086435 
1.00086528 
1.008 662 8 

- 

105 
0.88791 
0.92839 

0.94924 
0.94961 
0.94998 
0.95024 
0.950 6 1 
0.951 09 
0.951 36 
0.951 75 
0.952 22 
0.95257 
0.95291 
0.95328 

- 

Dl(Z), (38) 
0.046 15 
0.026 84 

0.01054 
0.0 10 08 
0.00959 
0.00925 
0.008 73 
0.00802 
0.00760 
0.00693 
0.006 08 
0.005 35 
0.00454 
0.00350 

- 

D,(Z), (35) 
0.03846 
0.02443 

0.0 10 45 
0.01002 
0.00956 
0.00923 
0.008 73 
0.00804 
0.007 63 
0.00697 
0.006 12 
0.005 37 
0.00453 
0.00341 

- 

D,(Z), (39) 
0.1567 
0.1436 

0.1289 
0.1284 
0.1279 
0.1274 
0.1268 
0.1259 
0.1254 
0.1245 
0.1232 
0.122 1 
0.1206 
0.1189 

- 

TABLE 5. Comparison of computed solution near separation point 
with that predicted by (35) and (36); Pr = 1.0 

DZW (36) 
0.1472 
0.1390 

0.1280 
0.1276 
0.127 1 
0.1267 
0.1262 
0.1254 
0.1250 
0.1242 
0.1231 
0.122 1 
0.1208 
0.1190 

- 

order to obtain accurate distributions of skin friction and heat transfer to the 
separation point we have used the truncated Buckmaster's series solutions given in 
(35) and (36). The two unknown constants involved, a, and B,, can be determined 
from a set of D,(z )  and D,(x) computed from (38) and (39) a t  a station z Q 1. For 
each of the flow cases considered we have determined a, and B, a t  a number of 
streamwise stations. The variation of calculated a, and B, is negligibly small for the 
accurate data very close to separation. The determined a, and B, for the flow 
problems considered with the assumption of Prandtl number Pr = 1.0 are given in 
table 4. It is interesting to note that the wall temperature has little effect upon the 
value of 01, for the flow problems with pressure-gradient parameter A = 1.0. The 
distributions of D,(z) and D,(z) computed from the truncated series (35) and (36) with 
the determined constants a, and B, agree with the numerical solutions for an 
appreciable region of the boundary layer very close to separation. The results of a 
heated-wall case ( A  = 1.0 and S, = 1.0) are presented in figure 3. To demonstrate 
further the degree of agreement the comparison for the case A = 1, S, = - f  is 
presented in table 5. 

The heat-transfer coefficient Q, defined in (28) can be related to D,(z)  defined in 

12-2 
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FIGURE 5.  The distributions of D,(z) and D,(z) near separation for a cooled-wall case ( A  = 1.0 and 
S,  = -0.5) with Pr = 0.72: ---, numerical results; ---, Buckmaster’s expansions with a, = 1.37 
and B, = 0.180. 

(36). Expressing in terms of our transformed variables, we find from (34) and (39) 
that 

With the two constants a, and B, determined from the numerical results close to 
separation, the heat-transfer coefficient Q,(€J at the separation point 5, can be 
calculated from (41). The computed results shown in table 4 are rather surprising; 
it seems to indicate that the heat-transfer coefficient at  separation is constant for the 

FIGURE 4. The distributions of D,(z) and D,(z) near separation for a heated-wall case ( A  = 1.0 and 
S, = 1.0) with Prandtl number = 0.72: -, numerical results; ---, Buckmaster’s expansions 
with a, = 1.40 and B,  = -0.102. 
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~ 

Uw A-’ a1 B, Q2 at  separation A S W  

1 .o 1 .o 2 1.40 - 0.102 0.208 - 1 

1 .o -+ -1.0 1.37 0.180 0.184 

TABLE 6. Values of a,, B, and Q2 at separation; Pr = 0.72 

class of compressible laminar boundary-layer flow governed by (1)-(8) with the 
external velocity described by (25)  and (26) and the assumption of Prandtl number 
Pr = 1.0. 

The effect of Prandtl number upon the solution close to separation has been 
investigated for a heated-wall case ( A  = 1.0 and 8, = 1.0) and a cooled-wall case 
( A  = 1.0 and S, = -0.5). For Prandtl number Pr = 0.72 and free-stream Mach 
number M ,  = 0.5, the numerical results, presented in figures 4 and 5 ,  clearly show 
that D,(z) is proportional to (x,-x)i and that D,(z) is proportional to (x,-x):. The 
results seem to indicate that Buckmaster’s series solutions, (35) and (36), retain their 
validity for Pr = 0.72. The calculated constants a, and B, and the heat transfer Q, 
at separation are given in table 6. Comparison with the entries of table 4 shows that 
the effect of Prandtl number on the heated-wall case is less than that on the cooled-wall 
case. Moreover, the computed heat-transfer coefficient at  separation Q2((,) does vary 
with the wall temperature if the Prandtl number is not equal to unity. 

6. Conclusions 
Numerical solutions of the compressible laminar boundary-layer equations have 

been obtained for a number of flows that separate under the action of an adverse 
pressure gradient proportional to a positive parameter A. 

For A > 1.0 the computed skin friction is in excellent agreement with Curle’s 
asymptotic series solution obtained under the assumptions that A is large and 
Pr = 1 .O. The computed heat-transfer distribution is in excellent agreement with 
Curle’s results far from the separation point, but exhibits a steadily increasing 
difference as separation is approached. It is shown that Curle’s series solutions cannot 
be used for h < 1.0. 

The nature of the singularity at the separation point has been investigated in 
detail. The numerical method employed allows the integration to be carried out to 
at least one integration step upstream of the separation point. The solutions for all 
cases run (nearly insulated, cooled and heated wall, Pr = 1.0) are in agreement with 
Buckmaster’s series expansions derived for cold-wall separation. The two constants 
in Buckmaster’s series expansions have been evaluated and the heat-transfer 
coefficient at  the separation point determined. It is found that the heat-transfer 
coefficient at  separation is relatively insensitive to wall-temperature conditions for 
Pr = 1.0. 

A limited investigation of the flow characteristics for Pr = 0.72 seems to indicate 
that the nature of the singularity at  separation remains unchanged. 

Appendix 
The transformations used between (1)-(8) and (9)-( 14) are summarized here. The 

motivation of each transformation and the detailed derivations of the transformed 
equations are given by Liakopoulos (1982). 
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The governing differential equations are written in terms of dimensionless variables 
by selecting as reference values the free-stream velocity U ,  and the characteristic 
length L of the problem at hand. The new variables are 

S Z ( %  Yz) = S(x ,  Y). 
A transformation is introduced so that the x-momentum and energy equations are 

independent of the Reynolds number, and the boundary conditions imposed on the 
variables related to u, and S, are the same for all boundary-layer flows of the class 
considered (Hsu 1976). The relations between the new and old variables are 

x3 = 6’ uze ds, y3 = Re2 uz,(x2) yz, 

~ 3 e ( 5 3 )  = Uze(xz), @(z3) = fJzw(xz), 

where Re = U ,  Llv, .  

of the velocity and temperature functions, is defined by 
The final transformation, which involves a distortion of (x3, y,)-coordinates and 
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